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In this section, we introduce the systematic integrand reduction method for higher loop orders

via Groebner basis.

It was a long-lasting problem in the history that for the higher-loop amplitude, it is not clear

how to reduce the integrand sufficiently, such that the coefficients of the reduced integrand can be

completely determined by the generalized unitarity. This problem was solved by using a modern

mathematical tool in computational algebraic geometry (CAG), Groebner basis [1].

CAG aims at multivariate polynomial and rational function problems in the real world. It

began with Buchberger’s algorithm in 1970s, which obtained the Gröbner basis for a polynomial

ideal. Buchberger’s algorithm for polynomials is similar to Gaussian Elimination for linear algebra:

the latter finds a linear basis of a subspace while the former finds a “good” generating set for an

ideal. Then CAG developed quickly and now people use it outside mathematics, like in robotics,

cryptography and game theory. I believe that CAG is crucial for the deep understanding of multi-

loop scattering amplitudes.

I. ISSUES AT HIGHER LOOP ORDERS

Since OPP method is very convenient for one-loop cases, the natural question is: is it possible

to generalize OPP method for higher loop orders?

Of course, higher loop diagrams contain more loop momenta and usually more propagators. Is

it a straightforward generalization? The answer is “no”. For example, consider the 4D 4-point

massless double box diagram (see Fig. 1), associated with the integral,

Idbox[N ] =

∫
d4l1
iπ2

d4l2
iπ2

N

D1D2D3D4D5D6D7
. (1)

The denominators of propagators are,

D1 = l21, D2 = (l1 − k1)2, D3 = (l1 − k1 − k2)2, D4 = (l2 + k1 + k2)2,

D5 = (l2 − k4)2, D6 = l22, D7 = (l1 + l2)2 . (2)

The goal of reduction is to express,

Ndbox = ∆dbox + h1D1 + . . .+ h7D7 (3)
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FIG. 1: two-loop double box diagram

such that ∆dbox is the “simplest”. (In the sense that all its coefficients in ∆dbox can be uniquely

fixed from unitarity, as in the box case.)

We use van Neerven-Vermaseren basis as before, {e1, e2, e3, e4} = {k1, k2, k4, ω}. Define

xi = l1 · ei, yi = l2 · ei, i = 1, . . . 4. (4)

Then we try to determine ∆dbox in these variables like one-loop OPP method.

x1 =
1

2
(D1 −D2) ,

x2 =
1

2
(D2 −D3) +

s

2
,

y2 =
1

2
(D4 −D6)− y1 −

s

2
,

y3 =
1

2
(D6 −D5) , (5)

Hence we can remove RSPs: x1, x2, y2 and y3 in ∆dbox. (We trade y2 for y1, by symmetry

consideration: under the left-right flip symmetry of double box, x3 ↔ y1. ) There are 4 ISPs, x3,

y1, x4 and y4.

Then following the one-loop OPP approach, the quadratic terms in (li ·ω) can be removed from

the integrand basis, since,

x2
4 = x2

3 − tx3 +
t2

4
+O(Di) ,

y2
4 = y2

1 − ty1 +
t2

4
+O(Di) ,

x4y4 =
s+ 2t

s
x3y1 +

t

2
x3 +

t

2
y1 −

t2

4
+O(Di) . (6)

Then the trial version of integrand basis has the form,

∆dbox =
∑
m

∑
n

∑
α

∑
β

cm,n,α,βx
m
3 y

n
1x

α
4 y

β
4 , (7)
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x1 x2 x3 x4 y1 y2 y3 y4

(1) 0 s
2 z1 z1 − t

2 0 − s
2 0 t

2

(2) 0 s
2 z2 −z2 + t

2 0 − s
2 0 − t

2

(3) 0 s
2 0 t

2 z3 −z3 − s
2 0 z3 − t

2

(4) 0 s
2 0 - t2 z4 −z4 − s

2 0 −z4 + t
2

(5) 0 s
2

z5−s
2

z5−s−t
2

s(s+t−z5)
2z5

− s(s+t)
2z5

0 (s+t)(s−z5)
2z5

(6) 0 s
2

z6−s
2

−z6+s+t
2

s(s+t−z6)
2z6

− s(s+t)
2z6

0 − (s+t)(s−z6)
2z6

TABLE I: solutions of the 4D double box heptacut.

where (α, β) ∈ {(0, 0), (1, 0), (0, 1)}. The renormalization condition is,

m+ α ≤ 4, n+ β ≤ 4, m+ n+ α+ β ≤ 6 . (8)

By counting, there are 56 terms in the basis. Is this basis correct?

Have a look at the unitarity solution. The heptacut D1 = . . . D7 = 0 has a complicated solution

structure [2]. (See table. I). There are 6 branches of solutions, each of which is parameterized by a

free parameter zi. Solutions (5) and (6) contain poles in zi, hence we need Laurent series for tree

products,

S(i) =
4∑

k=−4

d
(i)
k z

k
i , i = 5, 6 . (9)

The bounds are from renormalization conditions, so there are 9 nonzero coefficients for each case.

Solutions (1), (2), (3), (4) are relatively simpler,

S(i) =
4∑

k=0

d
(i)
k z

k
i , i = 1, 2, 3, 4 . (10)

So there are 5 nonzero coefficients for each case. These solutions are not completely indenpendent,

for example, solution (1) at z1 = s and solution (6) at z6 = t/2 correspond to the same loop

momenta. Therefore,

S(1)(z1 → s) = S(6)(z6 → t/2) . (11)

There are 6 such intersections, namely between solutions (1) and (6), (1) and (4), (2) and (3), (2)

and (5), (3) and (6), (4) and (5). Hence, there are 9× 2 + 5× 4− 6 = 32 independent d
(i)
k ’s.

Now the big problem emerges,

56 > 32 . (12)
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There are more terms in the integrand basis than those determined from unitarity cut. That means

this integrand basis is redundant. However, it seems that we already used all algebraic constraints

in (5) and (6). Which constraint is missing?

II. ELEMENTARY COMPUTATIONAL ALGEBRAIC GEOMETRY METHODS

A. Basic facts of algebraic geometry in affine space I

In order to apply the new method, we need to list some basic concepts and facts on algebraic

geometry [3].

We start from a polynomial ring R = F[z1, . . . zn] which is the collection of all polynomials

in n variables z1, . . . zn with coefficients in the field F. For example, F can be Q, the rational

numbers, C, the complex numbers, Z/pZ, the finite field of integers modulo a prime number p, or

C(c1, c2, . . . ck), the complex rational functions of parameters c1, . . . , ck.

Recall that the right hand side of (3) contains the sum h1D1 + . . .+h7D7 where Di’s are known

polynomials and hi’s are arbitrary polynomials. What are general properties of such a sum? That

leads to the concept of ideal.

Definition 1. An ideal I in the polynomial ring R = F[z1, . . . zn] is a subset of R such that,

• 0 ∈ I. For any two f1, f2 ∈ I, f1 + f2 ∈ I. For any f ∈ I, −f ∈ I.

• For ∀f ∈ I and ∀h ∈ R, hf ∈ I.

The ideal in the polynomial ring R = F[z1, . . . zn] generated by a subset S of R is the collection

of all such polynomials, ∑
i

hifi, hi ∈ R, fi ∈ S. (13)

This ideal is denoted as 〈S〉. In particular, 〈1〉 = R, which is an ideal which contains all polynomials.

Note that even if S is an infinite set, the sum in (13) is always restricted to a sum of a finite number

of terms. S is called the generating set of this ideal.

Example 2. Let I = 〈x2 + y2 + z2 − 1, z〉 in Q[x, y, z]. By definition,

I = {h1(x2 + y2 + z2 − 1) + h2 · z, ∀h1, h2 ∈ R} , (14)

Pick up h1 = 1, h2 = −z, and we see x2 + y2 − 1 ∈ I. Furthermore,

x2 + y2 + z2 − 1 = (x2 + y2 − 1) + z · z . (15)



5

Hence I = 〈x2 + y2 − 1, z〉. We see that, in general, the generating set of an ideal is not unique.

Our integrand reduction problem can be rephrased as: given N and the ideal I = 〈D1, . . . , D7〉,

how many terms in N are in I? To answer this, we need to study properties of ideals.

Theorem 3 (Noether). The generating set of an ideal I of R = F[z1, . . . zn] can always be chosen

to be finite.

Proof. See Zariski, Samuel [4].

This theorem implies that we only need to consider ideals generated by finite sets in the poly-

nomial ring R.

Definition 4. Let I be an ideal of R, we define an equivalence relation,

f ∼ g, if and only if f − g ∈ I . (16)

We define an equivalence class, [f ] as the set of all g ∈ R such that g ∼ f . The quotient ring R/I

is set of equivalence classes,

R/I = {[f ]|f ∈ R} . (17)

with multiplication [f1][f2] ≡ [f1f2]. (Check this multiplication is well-defined.)

To study the structure of an ideal, it is very useful to consider the algebra-geometry relation.

Definition 5. Let K be a field, F ⊂ K. The n-dimensional K-affine space An
K is the set of all

n-tuple of K. Given a subset S of the polynomial ring F[z1, . . . , zn], its algebraic set over K is,

ZK(S) = {p ∈ An
K|f(p) = 0, for every f ∈ S}. (18)

If K = F, we drop the subscript K in An
K and ZK(S).

So the algebraic set Z(S) consists of all common solutions of polynomials in S. Note that to

solve polynomials in S is equivalent to solve all polynomials simultaneously in the ideal generated

by S,

Z(S) = Z(〈S〉), (19)

since if p ∈ Z(S), then f(p) = 0, ∀f ∈ S. Hence,

h1(p)f1(p) + . . .+ hk(p)fk(p) = 0, ∀hi ∈ R, ∀fi ∈ S. (20)
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So we always consider the algebraic set of an ideal.

For example, Z(〈1〉) = ∅ (empty set) since 1 6= 0. For the ideal I = 〈x2 + y2 + z2 − 1, z〉 in

example 2, Z(I) is the unit circle on the plane z = 0.

We want to learn the structure of an ideal from its algebraic set. First, for the empty algebraic

set,

Theorem 6 (Hilbert’s weak Nullstellensatz). Let I be an ideal of F[z1, . . . zn] and K be an alge-

braically closed field [14] , F ⊂ K. If ZK(I) = ∅, then I = 〈1〉.

Proof. See Zariski and Samuel, [5, Chapter 7].

Remark. The field extension K must be algebraically closed. Otherwise, say, K = F = Q, the ideal

〈x2 − 2〉 has empty algebraic set in Q. (The solutions are not rational). However, 〈x2 − 2〉 6= 〈1〉.

On the other hand, F need not be algebraically closed. I = 〈1〉 means,

1 = h1f1 + . . .+ hkfk, fi ∈ I, hi ∈ F[z1, . . . zn] . (21)

where hi’s coefficients are in F, instead of an algebraic extension of F.

Example 7. We prove that, generally, the 4D pentagon diagrams are reduced to diagrams with

fewer than 5 propagators, D-dimensional hexagon diagram are reduced to diagrams with fewer than

6 propagators, in the integrand level.

For the 4D pentagon case, there are 5 denominators from propagators, namely D1, . . . D5. There

are 4 Van Neerven-Vermaseren variables for the loop momenta, namely x1, x2, x3 and x4. So

Di’s are polynomials in x1, . . . , x4 with coefficients in F = Q(s12, s23, s34, s45, s15). Define I =

〈D1, . . . D5, 〉. Generally 5 equations in 4 variables,

D1 = D2 = D3 = D4 = D5 = 0 , (22)

have no solution (even with algebraic extensions). Hence by Hilbert’s weak Nullstellensatz, I = 〈1〉.

Explicitly, there exist 5 polynomials fi’s in F[x1, x2, x3, x4] such that

f1D1 + f2D2 + f3D3 + f4D4 + f5D5 = 1 . (23)

Therefore,∫
d4l

1

D1D2D3D4D5
=

∫
d4l

f1

D2D3D4D5
+

∫
d4l

f2

D1D3D4D5
+

∫
d4l

f3

D1D2D4D5∫
d4l

f4

D1D2D3D5
+

∫
d4l

f5

D1D2D3D4
, (24)
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where each term in the r.h.s is a box integral (or simpler). Note that fi’s are in

F[x1, x2, x3, x4], so the coefficients of these polynomials are rational functions of Mandelstam vari-

ables s12, s23, s34, s45, s15. Weak Nullstellensatz theorem does not provide an algorithm for finding

such fi’s. The algorithm will be given by the Gröbner basis method in next subsection, or by the

resultant method [6].

Notice that in the DimReg case, we have one more variable µ11 = −(l⊥)2. The same argument

using Weak Nullstellensatz leads to the result.

For a general algebraic set, we have the important theorem:

Theorem 8 (Hilbert’s Nullstellensatz). Let F be an algebraically closed field and R = F[z1, . . . zn].

Let I be an ideal of R. If f ∈ R and,

f(p) = 0, ∀p ∈ Z(I), (25)

then there exists a positive integer k such that fk ∈ I.

Proof. See Zariski and Samuel, [5, Chapter 7].

Hilbert’s Nullstellensatz characterizes all polynomials vanishing on Z(I), they are “not far away”

from elements in I. For example, I = 〈(x− 1)2〉 and Z(I) = {1}. The polynomial f(x) = (x− 1)

does not belong to I but f2 ∈ I.

Definition 9. Let I be an ideal in R, define the radical ideal of I as,

√
I = {f ∈ R|∃k ∈ Z+, fk ∈ I} . (26)

For any subset V of An, define the ideal of V as

I(V ) = {f ∈ R|f(p) = 0, ∀p ∈ V } . (27)

Then Hilbert’s Nullstellensatz reads, over an algebraically closed field,

I(Z(I)) =
√
I . (28)

An ideal I is called radical, if
√
I = I.

If two ideals I1 and I2 have the same algebraic set Z(I1) = Z(I2), then they have the same

radical ideals
√
I1 =

√
I2. On the other hand, if two sets in An have the same ideal, what could

we say about them? To answer this question, we need to define topology of An:
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Definition 10 (Zariski topology). Define Zariski topology of An
F by setting all algebraic set to be

topologically closed. (Here F need not be algebraic closed.)

Remark. The intersection of any number of Zariski closed sets is closed since,

⋂
i

Z(Ii) = Z(
⋃
i

Ii). (29)

The union of two closed sets is closed since,

Z(I1)
⋃
Z(I2) = Z(I1I2) = Z(I1 ∩ I2). (30)

An
F and ∅ are both closed because An

F = Z({0}), ∅ = Z(〈1〉). That means Zariski topology is

well-defined. We leave the proof of (29) and (30) as an exercise.

Note that Zariski topology is different from the usual topology defined by Euclidean distance, for

F = Q,R,C. For example, over C, the “open” unit disc defined by D = {z||z| < 1} is not Zariski

open in A1
C. The reason is that C −D = {z||z| ≥ 1} is not Zariski closed, i.e. C −D cannot be

the solution set of one or several complex polynomials in z.

Zariski topology is the foundation of affine algebraic geometry. With this topology, the dictio-

nary between algebra and geometry can be established.

Proposition 11. (Here F need not be algebraic closed.)

1. If I1 ⊂ I2 are ideals of F[z1, . . . zn], Z(I1) ⊃ Z(I2)

2. If V1 ⊂ V2 are subsets of An
F, I(V1) ⊃ I(V2)

3. For any subset V in An
F, Z(I(V )) = V , the Zariksi closure of V .

Proof. The first two statements follow directly from the definitions. For the third one, V ⊂

Z(I(V )). Since the latter is Zariski closed, V ⊂ Z(I(V )). On the other hand, for any Zariski

closed set X containing V , X = Z(I). I ⊂ I(V ). From statement 1, X = Z(I) ⊃ Z(I(V )). As a

closed set, Z(I(V )) is contained in any closed set which contains V , hence Z(I(V )) = V .

In the case F is algebraic closed, the above proposition and Hilbert’s Nullstellensatz established

the one-to-one correspondence between radical ideals in F[z1, . . . zn] and closed sets in An
F. We

will study geometric properties like reducibility, dimension, singularity later in these lecture notes.

Before this, we turn to the computational aspect of affine algebraic geometry, to see how to explicitly

compute objects like I1 ∩ I2 and Z(I).
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Consider I = {x2 − y2, x3 + y3 − z2} in C[x, y, z]. From naive counting, Z(I) is a curve since

there are 2 equations in 3 variables. However, the plot of Z(I) (Figure 2) looks like a line and

a cusp curve. So Z(I) is reducible, in the sense that it can be decomposed into smaller algebraic

sets. So we need the concept of primary decomposition.

FIG. 2: A reducible algebraic set (in blue), defined by Z({x2 − y2, x3 + y3 − z2}).

Definition 12. An ideal I in a ring R is called prime, if ∀ab ∈ I (a, b ∈ R) then a ∈ I or b ∈ I.

An ideal I in R is called primary is if ab ∈ I (a, b ∈ R) then a ∈ I or bn ∈ I, for some positive

integer n.

A prime ideal must be a primary ideal. On the other hand,

Proposition 13. If I is a primary ideal, then the radical of I,
√
I is a prime ideal.

Proof. See Zariski and Samuel [4, Chapter 3].

Note that I = {x2 − y2, x3 + y3 − z2} is not a prime ideal or primary ideal. Define a = x− y,

b = x+y, clearly ab ∈ I, but a 6∈ I and bn 6∈ I for any positive integer n. (The point P = (2, 2, 4) ∈

Z(I). If (x+ y)n ∈ I then (x+ y)n|P = 0. It is a contradiction.)

For another example, J = 〈(x− 1)2〉 in C[x] is primary but not prime. Z(J) contains only one

point {1} with the multiplicity 2. (x− 1)(x− 1) ∈ J but (x− 1) 6∈ J . For there examples, we see

primary condition implies that the corresponding algebraic set cannot be decomposed to smaller

algebraic sets, while prime condition further requires that the multiplicity is 1.

Theorem 14 (Lasker-Noether). For an ideal I in F[z1, . . . zn], I has the primary decomposition,

I = I1 ∩ . . . ∩ Im , (31)
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such that,

• Each Ii is a primary ideal in F[z1, . . . zn],

• Ii 6⊃ ∩j 6=iIj,

•
√
Ii 6=

√
Ij, if i 6= j.

Although primary decomposition may not be unique, the radicals
√
Ii’s are uniquely determined by

I up to orders.

Proof. See Zariski, Samuel [4, Chapter 4].

Note that unlike Gröbner basis, primary decomposition is very sensitive to the number field.

For an ideal I ⊂ F[z1, . . . zn], F ⊂ K, the primary decomposition results of I in F[z1, . . . zn] and

K[z1, . . . , zn] can be different. Primary decomposition can be computed by Macaulay2 or Sin-

gular. However, the computation is heavy in general.

Primary decomposition was also used for studying string theory vacua [? ].

Example 15. Consider I = {x2− y2, x3 + y3− z2}. Use Macaulay2 or Singular, we find that,

I = I1 ∩ I2, where,

I1 = 〈z2, x+ y〉, I2 = 〈2y3 − z2, x− y〉 (32)

Then
√
I1 = 〈z, x+ y〉 is a prime ideal, where I2 itself is prime.

When I ⊂ F[z1, . . . zn] has a primary decomposition I = I1 ∩ . . . ∩ Im, m > 1, then ZF(I) =

ZF(I1)∪ . . .∪ZF(Im). Then algebraic set decomposed to the union of sub algebraic sets. We switch

the study of reducibility to the geometric side.

Definition 16. Let V be a nonempty closed set in AF in Zariski topology, V is irreducible, if V

cannot be a union of two closed proper subsets of V .

Proposition 17. Let K be an algebraic closed field. There is a one-to-one correspondence:

prime ideals in K[z1, . . . zn] irreducible algebraic sets in AK

I −→ ZK(I)

I(V ) ←− V

(33)

Proof. (Sketch) This follows from Hilbert Nullstellensatz (28).
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We call an irreducible Zariski closed set “affine variety”. Similar to primary decomposition of

ideals, algebraic set has the following decomposition,

Theorem 18. Let V be an algebraic set. V uniquely decomposes as the union of affine varieties,

V = V1 ∪ . . . ∪ Vm, such that Vi 6⊃ Vj if i 6= j.

Proof. Let I = I(V ). The primary decomposition determines that I = I1 ∩ . . . ∩ Im. Since I is a

radical ideal, all Ii’s are prime. Then V = Z(I) = ∩mi=1Z(Ii). Each Z(Ii) is an affine variety. If

Z(Ii) ⊃ Z(Ij), then Ii ⊂ Ij which is a violation of radical uniqueness of Lasker-Noether theorem.

If there are two decompositions, V = V1∪ . . .∪Vm = W1∪ . . .∪Wl. V1 = V1∩ (W1∪ . . .∪Wl) =

(V1 ∩ W1) ∪ . . . (V1 ∩ Wl). Since V1 is irreducible, V1 equals some V1 ∩ Wj , , say j = 1. Then

V1 ⊂ W1. By the same analysis W1 ⊂ Vi for some i. Hence V1 ⊂ Vi and so i = 1. We proved

W1 = V1. Repeat this process, we see that the two decompositions are the same.

Example 19. As an application, we use primary decomposition to find cut solutions of 4D double

box in Table I. It is quite messy to derive all unitarity solutions by brute force computation. In this

situation, primary decomposition is very helpful.

Use van Neerven-Vermaseren variables, the ideal I = 〈D1, . . . D7〉 decomposes as I = I1 ∩ I2 ∩

I3 ∩ I4 ∩ I5 ∩ I6.

I1 = {2y4 − t, s+ 2y2,−t+ 2x3 − 2x4, y3,
s

2
+ y1 + y2, x2 −

s

2
, x1} ,

I2 = {t+ 2y4, s+ 2y2,−t+ 2x3 + 2x4, y3,
s

2
+ y1 + y2, x2 −

s

2
, x1} ,

I3 = {s+ t+ 2y2 + 2y4, 2x4 − t, x3, y3,
s

2
+ y1 + y2, x2 −

s

2
, x1} ,

I4 = {s+ t+ 2y2 − 2y4, t+ 2x4, x3, y3,
s

2
+ y1 + y2, x2 −

s

2
, x1} ,

I5 = {s+ t+ 2y2 + 2y4, x4(2s+ 2t) + y4(2s+ 2t) + st+ t2 + 4x4y4,

−t+ 2x3 − 2x4, y3,
s

2
+ y1 + y2, x2 −

s

2
, x1} ,

I6 = {s+ t+ 2y2 − 2y4, x4(−2s− 2t) + y4(−2s− 2t) + st+ t2 + 4x4y4,

−t+ 2x3 + 2x4, y3,
s

2
+ y1 + y2, x2 −

s

2
, x1} . (34)

Each Ii is prime and corresponds to a solution in Table I. Singular computes this primary de-

composition in about 3.6 seconds on a laptop. In practice, the computation can be sped up if we

first eliminate all RSPs.

Hence the unitarity solution set Z(I) consists of six irreducible solution sets Z(Ii), i = 1 . . . 6.

Each one can be parametrized by a free parameter.
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For a variety V , we want to define its dimension. Intuitively, we may test if V contains a point,

a curve, a surface...? So the dimension of V is defined as the length of variety sequence in V ,

Definition 20. The dimension of a variety V , dimV , is the largest number n in all sequences

∅ 6= W0 ⊂W1 . . . ⊂Wn ⊂ V , where Wi’s are distinct varieties.

On the algebraic side, let V = Z(I), where I is an ideal in R = F[z1, . . . zn]. Consider the

quotient ring R/I. Roughly speaking, the remaining “degree of freedom” of R/I should be the

same as dimV . Krull dimension counts “the degree of freedom”,

Definition 21 (Krull dimension). The Krull dimension of a ring S, is the largest number n in all

sequences p0 ⊂ p1 . . . ⊂ pn, where pi’s are distinct prime ideals in S.

If for a prime ideal I, R/I is has Krull dimension zero then I is a maximal ideal. A maximal

ideal I in R is an ideal which such that for any proper ideal J ⊃ I, J = I. I is a maximal idea, if

and only if R/I is a field. (R itself is not a maximal idea of R). When F is algebraically closed,

then any maximal ideal I in R = F[z1, . . . zn] has the form [7],

I = 〈z1 − c1, . . . zn − cn〉, ci ∈ F. (35)

Note that the point (c1, . . . , cn) is zero-dimensional, and R/I = F has Krull dimension 0. More

generally,

Proposition 22. If F is algebraically closed and I a prime proper ideal of R = F[z1, . . . zn]. Then

the Krull dimension of R/I equals dimZ(I).

Proof. See Hartshorne [3, Chapter 1]. Note that Krull dimension of R/I is different from the linear

dimension dimFR/I.

In summary, we has the algebra-geometry dictionary (Table II), where the last two rows hold

if F is algebraic closed.

B. Gröbner basis

1. One-variable case

We see that ideal is the central concept for the algebraic side of classical algebraic geometry.

An ideal can be generated by different generating sets, some may be redundant or complicated.
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Algebra Geometry

Ideal I in F[z1, . . . zn] algebraic set Z(I)

I1 ∩ I2 Z(I1 ∩ I2) = Z(I1) ∪ Z(I2)

I1 + I2 Z(I1 + I2) = Z(I1) ∩ Z(I2)

I1 ⊂ I2 ⇒ Z(I1) ⊃ Z(I2)

prime ideal I ⇒ Z(I) (irreducible) variety

maximal ideal I ⇒ Z(I) is a point

Krull dimension of dimF[z1, . . . zn]/I = dimZ(I)

TABLE II: algebraic geometry dictionary

In linear algebra, given a linear subspace V = span{v1 . . . vk} we may use Gaussian elimination to

find the linearly-independent basis of V or Gram-Schmidt process to find an orthonormal basis.

For ideals, a “good basis” can also dramatically simplify algebraic geometry problems.

Example 23. As a toy model, consider some univariate cases.

• For example, I = 〈x3 − x − 1〉 in R = Q[x]. Clearly, I consists of all polynomials in x

proportional to x3 − x − 1, and every nonzero element in I has the degree higher or equal

than 3. So we say B(I) = {x3 − x − 1} is a “good basis” for I. B(I) is useful: for any

polynomial F (x) in Q[x], polynomial division determines,

F (x) = q(x)(x3 − x− 1) + r(x), q(x), r(x) ∈ Q[x], deg r(x) < 3 (36)

Hence F (x) is in I if and only if the remainder r is zero. It also implies that R/I =

spanQ{[1], [x], [x2]}.

• Consider J = 〈x3 − x2 + 3x − 3, x2 − 3x + 2〉. Is the naive choice B(J) = {f1, f2} =

{x3−x2 + 3x− 3, x2− 3x+ 2} a good basis? For instance, f = f1−xf2 = 2x2 +x− 3 is in I

but it is proportional to neither f1 nor f2. Polynomial division over this basis is not useful,

since f ’s degree is lower than f1, the only division reads,

f = 2f2 + (7x− 7) . (37)

The remainder does not tell us the membership of f in I. Hence B(J) does not characterize

I or R/I, and it is not “good”. Note that Q[x] is a principal ideal domain (PID), any ideal

can be generated by one polynomial. Therefore, use Euclidean algorithm (Algorithm 1) to

find the greatest common factor of f1 and f2,

(x− 1) =
1

7
f1(x)− x+ 2

7
f2(x), (x− 1)|f1(x), (x− 1)|f2(x) (38)
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Hence J = 〈x − 1〉. We can check that B̃(J) = {x − 1} is a “good” basis in the sense

that Euclidean division over B̃(J) solves membership questions of J and determined R/J =

spanQ{[1]}.

Algorithm 1 Euclidean division for greatest common divisor
1: Require: f1, f2, deg f1 ≥ deg f2

2: while f2 6 |f1 do

3: polynomial division f1 = qf2 + r

4: f1 := f2

5: f2 := r

6: end while

7: return f2 (gcd)

Recall that in (3), given inverse propagators D1, . . . , D7, we need to solve the membership

problem of I = 〈D1 . . . D7〉 and compute R/I. However, in general, a set like {D1 . . . D7} is not a

“good basis”, in the sense that the polynomial division over this basis does not solve the membership

problem or give a correct integrand basis (as we see previously). Since it is a multivariate problem,

the polynomial ring R is not a PID and we cannot use Euclidean algorithm to find a “good basis”.

Look at Example 23 again. For the univariate case, there is a natural monomial order ≺ from

the degree,

1 ≺ x ≺ x2 ≺ x3 ≺ x4 ≺ . . . , (39)

and all monomials are sorted. For any polynomial F , define the leading term, LT(F ) to be the

highest monomial in F by this order (with the coefficient). For multivariate cases, the degree

criterion is not fine enough to sort all monomials, so we need more general monomial orders.

Definition 24. Let M be the set of all monomials with coefficients 1, in the ring R = F[z1, . . . zn].

A monomial order ≺ of R is an ordering on M such that,

1. ≺ is a total ordering, which means any two different monomials are sorted by ≺.

2. ≺ respects monomial products, i.e., if u ≺ v then for any w ∈M , uw ≺ vw.

3. 1 ≺ u, if u ∈M and u is not constant.

There are several important monomial orders. For the ring F[z1, . . . zn], we use the convention

1 ≺ zn ≺ zn−1 ≺ . . . ≺ z1 for all monomial orders. Given two monomials, g1 = zα1
1 . . . zαn

n and

g2 = zβ11 . . . zβnn , consider the following orders:
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• Lexicographic order (lex). First compare α1 and β1. If α1 < β1, then g1 ≺ g2. If α1 = α2,

we compare α2 and β2. Repeat this process until for certain αi and βi the tie is broken.

• Degree lexicographic order (grlex). First compare the total degrees. If
∑n

i=1 αi <
∑n

i=1 βi,

then g1 ≺ g2. If total degrees are equal, we compare (α1, β1), (α2, β2) ... until the tie is

broken, like lex.

• Degree reversed lexicographic order (grevlex). First compare the total degrees. If
∑n

i=1 αi <∑n
i=1 βi, then g1 ≺ g2. If total degrees are equal, we compare αn and βn. If αn < βn, then

g1 � g2 (reversed!). If αn = βn, then we further compare (αn−1, βn−1), (αn−2, βn−2) ... until

the tie is broken, and use the reversed result.

• Block order. This is the combination of lex and other orders. We separate the variables into

k blocks, say,

{z1, z2, . . . zn} = {z1, . . . zs1} ∪ {zs1+1, . . . zs2} . . . ∪ {zsk−1+1, . . . zn} . (40)

Furthermore, define the monomial order for variables in each block. To compare g1 and g2,

first we compare the first block by the given monomial order. If it is a tie, we compare the

second block... until the tie is broken.

Example 25. Consider Q[x, y, z], z ≺ y ≺ x. We sort all monomials up to degree 2 in lex, grlex,

grevlex and the block order [x] � [y, z] with grevlex in each block. This can be done be the following

Mathematica code:

F = 1 + x+ x2 + y + xy + y2 + z + xz + yz + z2;F = 1 + x+ x2 + y + xy + y2 + z + xz + yz + z2;F = 1 + x+ x2 + y + xy + y2 + z + xz + yz + z2;

MonomialList[F, {x, y, z},Lexicographic]MonomialList[F, {x, y, z},Lexicographic]MonomialList[F, {x, y, z},Lexicographic]

MonomialList[F, {x, y, z},DegreeLexicographic]MonomialList[F, {x, y, z},DegreeLexicographic]MonomialList[F, {x, y, z},DegreeLexicographic]

MonomialList[F, {x, y, z},DegreeReverseLexicographic]MonomialList[F, {x, y, z},DegreeReverseLexicographic]MonomialList[F, {x, y, z},DegreeReverseLexicographic]

MonomialList[F, {x, y, z}, {{1, 0, 0}, {0, 1, 1}, {0, 0,−1}}]MonomialList[F, {x, y, z}, {{1, 0, 0}, {0, 1, 1}, {0, 0,−1}}]MonomialList[F, {x, y, z}, {{1, 0, 0}, {0, 1, 1}, {0, 0,−1}}]

and the output is,{
x2, xy, xz, x, y2, yz, y, z2, z, 1

} {
x2, xy, xz, y2, yz, z2, x, y, z, 1

} {
x2, xy, y2, xz, yz, z2, x, y, z, 1

}{
x2, xy, xz, x, y2, yz, z2, y, z, 1

}
Note that for lex, x � y2, y � z2 since we first compare the power of x and the y. The total

degree is not respected in this order. On the other hand, grlex and grevlex both consider the total

degree first. The difference between grlex and grevlex is that, xz �grlex y
2 while xz ≺grevlex y

2. So

grevlex tends to set monomials with more variables, lower, in the list of monomials with a fixed
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degree. This property is useful for computational algebraic geometry. Finally, for this block order,

x � y2 since x’s degrees are compared first. But y ≺ z2, since [y, z] block is in grevlex.

With a monomial order, we define the leading term as the highest monomial (with coefficient) of

a polynomial in this order. Back to the second part of Example 23,

LT(f1) = x3 LT(f2) = x2, LT(x− 1) = x (41)

The key observation is that although x−1 ∈ J , its leading term is not divisible by the leading term

of either f1 or f2. This makes polynomial division unusable and {f1, f2} is not a “ good basis”.

This leads to the concept of Gröbner basis.

2. Gröbner basis

Definition 26. For an ideal I in F[z1, . . . zn] with a monomial order, a Gröbner basis G(I) =

{g1, . . . gm} is a generating set for I such that for each f ∈ I, there always exists gi ∈ G(I) such

that,

LT(gi)|LT(f) . (42)

We can check that for the ideal J in Example 23, {f1, f2} is not a Gröbner basis with respect

to the natural order, while {x− 1} is.

3. Multivariate polynomial division

To harness the power of Gröbner basis we need the multivariate division algorithm, which is a

generalization of univariate Euclidean algorithm (Algorithm 2). The basic procedure is that: given

a polynomial F and a list of k polynomials fi’s, if LT(F ) is divisible by some LT(fi), then remove

LT(F ) by subtracting a multiplier of fi. Otherwise move LT(F ) to the remainder r. The output

will be

F = q1f1 + . . . qkfk + r , (43)

where r consists of monomials cannot be divided by any LT (fi). Let B = {f1, . . . fk}, we denote

F
B

as the remainder r.

Recall that the one-loop OPP integrand reduction and the naive trial of two-loop integrand

reduction are very similar to this algorithm.
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Algorithm 2 Multivariate division algorithm
1: Require: F , f1 . . . fk, �

2: q1 := . . . := qk = 0, r := 0

3: while F 6= 0 do

4: reductionstatus := 0

5: for i = 1 to k do

6: if LT(fi)|LT(F ) then

7: qi := qi + LT(F )
LT(fi)

8: F := F − LT(F )
LT(fi)

fi

9: reductionstatus := 1

10:

11: end if

12: end for

13: if reductionstatus = 0 then

14: r := r + LT(F )

15: F := F − LT(F )

16: end if

17: end while

18: return q1 . . . qk, r

Note that for a general list of polynomials, the algorithm has two drawbacks: (1) the remainder

r depends on the order of the list, {f1, . . . fn} (2) if F ∈ 〈f1 . . . fn〉, the algorithm may not give a

zero remainder r. These made the previous two-loop integrand reduction unsuccessful. Gröbner

basis eliminates these problems.

Proposition 27. Let G = {g1, . . . gm} be a Gröbner basis in F[z1, . . . zn] with the monomial order

�. Let r be the remainder of the division of F by G, from Algorithm 2.

1. r does not depend on the order of g1, . . . gm.

2. If F ∈ I = 〈g1, . . . gm〉, then r = 0.

Proof. If the division with different orders of g1, . . . gn provides two remainder r1 and r2. If r1 6= r2,

then r1 − r2 contains monomials which are not divisible by any LT(gi). But r1 − r2 ∈ I, this is a

contradiction to the definition of Gröbner basis.

If F ∈ I, then r ∈ I. Again by the definition of Gröbner basis, if r 6= 0, LT(r) is divisible by

some LT(gi). This is a contradiction to multivariate division algorithm.
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Then the question is: given an ideal I = 〈f1 . . . fk〉 in F[z1, . . . zn] and a monomial order �,

does the Gröbner basis exist and how do we find it? This is answered by Buchberger’s Algorithm,

which was presented in 1970s and marked the beginning of computational algebraic geometry.

4. Buchberger algorithm

Recall that for one-variable case, Euclidean algorithm (Algorithm 1) computes the gcd of two

polynomials hence the Gröbner basis is given. The key step is to cancel leading terms of two

polynomials. That inspires the concept of S-polynomial in multivariate cases.

Definition 28. Given a monomial order � in R = F[z1, . . . zn], the S-polynomial of two polynomials

fi and fj in R is,

S(fi, fj) =
LT(fj)

gcd
(

LT(fi),LT(fj)
)fi − LT(fi)

gcd
(

LT(fi),LT(fj)
)fj . (44)

Note that the leading terms of the two terms on the r.h.s cancel.

Theorem 29 (Buchberger). Given a monomial order � in R = F[z1, . . . zn], Gröbner basis with

respect to � exists and can be found by Buchberger’s Algorithm (Algorithm 3).

Proof. See Cox, Little, O’Shea [7].

Algorithm 3 Buchberger algorithm

1: Require: B = {f1 . . . fn} and a monomial order �

2: queue := all subsets of B with exactly two elements

3: while queue! = ∅ do

4: {f, g} := head of queue

5: r := S(f, g)
B

6: if r 6= 0 then

7: B := B ∪ r

8: queue << {{B1, r}, . . . {last of B, r}}

9: end if

10: delete head of queue

11: end while

12: return B (Gröbner basis)

The uniqueness of Gröbner basis is given via reduced Gröbner basis.
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Definition 30. For R = F[z1, . . . zn] with a monomial order �, a reduced Gröbner basis is a

Gröbner basis G = {g1, . . . gk} with respect to �, such that

1. Every LT(gi) has the coefficient 1, i = 1, . . . , k.

2. Every monomial in gi is not divisible by LT(gj), if j 6= i.

Proposition 31. For R = F[z1, . . . zn] with a monomial order �, I is an ideal. The reduced

Gröbner basis of I with respect to �, G = {g1, . . . gm}, is unique up to the order of the list

{g1, . . . gm}. It is independent of the choice of the generating set of I.

Proof. See Cox, Little, O’Shea [7, Chapter 2]. Note that given a Gröbner basis B = {h1 . . . hm},

the reduced Gröbner basis G can be obtained as follows,

1. For any hi ∈ B, if LT(hj)|LT(hi), j 6= i, then remove hi. Repeat this process, and finally

we get the minimal basis G′ ⊂ B.

2. For every f ∈ G′, divide f towards G′−{f}. Then replace f by the remainder of the division.

Finally, normalize the resulting set such that every polynomial has leading coefficient 1, and

we get the reduced Gröbner basis G.

Note that Buchberger’s Algorithm reduces only one polynomial pair every time, more recent

algorithms attempt to (1) reduce many polynomial pairs at once (2) identify the “useless” poly-

nomial pairs a priori. Currently, the most efficient algorithms are Faugere’s F4 and F5 algorithms

[8, 9].

Usually we compute Gröbner basis by programs, for example,

• Mathematica The embedded GroebnerBasisGroebnerBasisGroebnerBasis computes Gröbner basis by Buchberger al-

gorithm. The relation between Gröbner basis and the original generating set is not given.

Usually, Gröbner basis computation in Mathematica is not very fast.

• Maple Maple computes Gröbner basis by either Buchberger’s Algorithm or highly efficient

F4 algorithm.

• Singular is a powerful computer algebraic system [10] developed in University of Kaiser-

slautern. Singular uses either Buchberger’s Algorithm or F4 algorithm to computer

Gröbner basis.
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• Macaulay2 is a sophisticated algebraic geometry program [11], which orients to research

mathematical problems in algebraic geometry. It contains Buchberger’s Algorithm and ex-

perimental codes of F4 algorithm.

• Fgb package [12]. This is a highly efficient package of F4 and F5 algorithms by Jean-Charles

Faugére. It has both Maple and C++ interfaces. Usually, it is faster than the F4

implement in Maple. Currently, coefficients of polynomials are restricted to Q or Z/p, in

this package.

Example 32. Consider f1 = x3 − 2xy, f2 = x2y − 2y2 + x. Compute the Gröbner basis of

I = 〈f1, f2〉 with grevlex and x � y.

We use Buchberger’s Algorithm.

1. In the beginning, the list is B := {h1, h2} and the pair set P := {(h1, h2)}, where h1 = f1,

h2 = f2,

S(h1, h2) = −x2, h3 := S(h1, h2)
B

= −x2 , (45)

with the relation h3 = yh1 − xh2.

2. Now B := {h1, h2, h3} and P := {(h1, h3), (h2, h3)}. Consider the pair (h1, h3),

S(h1, h3) = 2xy, h4 := S(h1, h3)
B

= 2xy , (46)

with the relation h4 = −h1 − xh3.

3. B := {h1, h2, h3, h4} and P := {(h2, h3), (h1, h4), (h2, h4), (h3, h4)}. For the pair (h2, h3),

S(h2, h3) = −x+ 2y2, h5 := S(h2, h3)
B

= −x+ 2y2 , (47)

The new relation is h5 = −h2 − yh3.

4. B := {h1, h2, h3, h4, h5} and

P := {(h1, h4), (h2, h4), (h3, h4), (h1, h5), (h2, h5), (h3, h5), (h4, h5)}. (48)

For the pair (h1, h4),

S(h1, h4) = −4xy2, S(h1, h4)
B

= 0 (49)

Hence this pair does not add information to Gröbner basis. Similarly, all the rests pairs are

useless.
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Hence the Groebner basis is

B = {h1, . . . h5} = {x3 − 2xy, x2y + x− 2y2,−x2, 2xy, 2y2 − x}. (50)

Consider all the relations in intermediate steps, we determine the conversion between the old basis

{f1, f2} and B,

h1 = f1, h2 = f2, h3 = f1y − f2x

h4 = −f1(1 + xy) + f2x
2, h5 = −f1y

2 + (xy − 1)f2 (51)

Then we determine the reduced Gröbner basis. Note that LT(h3)|LT(h1), LT(h4)|LT(h2), so h1

and h2 are removed. The minimal Gröbner basis is G′ = {h3, h4, h5}. Furthermore,

h3
{h4,h5}

= h3, h4
{h3,h5}

= h4, h5
{h3,h4}

= h5 (52)

so {h3, h4, h5} cannot be reduced further. The reduced Gröbner basis is

G = {g1, g2, g3} = {−h3,
1

2
h4,

1

2
h5} = {x2, xy, y2 − 1

2
x}. (53)

The conversion relation is,

g1 = −yf1 + xf2, g2 = −(1 + xy)

2
f1 +

1

2
x2f2, g3 = −1

2
y2f1 +

1

2
(xy − 1)f2. (54)

Mathematica finds G directly via GroebnerBasis[{x3 − 2xy, x2y − 2y2 + x}, {x, y},GroebnerBasis[{x3 − 2xy, x2y − 2y2 + x}, {x, y},GroebnerBasis[{x3 − 2xy, x2y − 2y2 + x}, {x, y},

MonomialOrder→ DegreeReverseLexicographic]MonomialOrder→ DegreeReverseLexicographic]MonomialOrder→ DegreeReverseLexicographic]. However, it does not provide the conversion (54).

This can be found by Maple or Macaulay2.

As a first application of Gröbner basis , we can see some fractions can be easily simplified (like

integrand reduction),

x2

(x3 − 2xy)(x2y − 2y2 + x)
=
−yf1 + xf2

f1f2
= − y

f2
+
x

f1

xy

(x3 − 2xy)(x2y − 2y2 + x)
=
−(1 + xy)f1/2 + x2f2/2

f1f2
= −1 + xy

2f2
+

x2

2f1

y2

(x3 − 2xy)(x2y − 2y2 + x)
=

h5 + x/2

f1f2
=

x

2f1f2
− y2

2f2
+
xy − 1

2f1
(55)

In first two lines, we reduce a fraction with two denominators to fractions with only one denomina-

tor. In the last line, a fraction with two denominators is reduced to a fraction with two denominators

but lower numerator degree (y2 → x). Higher-degree numerators can be reduced in the same way.

Hence we conclude that all fractions N(x, y)/(f1f2) can be reduced to,

1

f1f2
,

x

f1f2
,

y

f1f2
(56)
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and fractions with fewer denominators. Note that even with this simple example, one-variable

partial fraction method does not help the reduction.

We have some comments on Gröbner basis:

1. For F[z1, . . . zn], the computation of polynomial division and Buchberger’s Algorithm only

used addition, multiplication and division in F. No algebraic extension is needed. Let F ⊂ K

be a field extension. If B = {f1, . . . , fk} ⊂ F[z1, . . . zn], then the Gröbner basis computation

of B in K[x1, . . . , xn] produces a Gröbner basis which is still in F[z1, . . . zn], irrelevant of the

algebraic extension.

2. The form of a Gröbner basis and computation time dramatically depend on the monomial

order. Usually, grevlex is the fastest choice while lex is the slowest. However, in some cases,

Gröbner basis with lex is preferred. In these cases, we may instead consider some “midway”

monomial order the like block order, or convert a known grevlex basis to lex basis [13].

3. If all input polynomials are linear, then the reduced Gröbner basis is the echelon form in

linear algebra.

C. Application of Gröbner basis

Gröbner basis is such a powerful tool that once it is computed, most computational problems

on ideals are solved.

1. Ideal membership and fraction reduction

A Gröbner basis immediately solves the ideal membership problem. Given an F ∈ R =

F[z1, . . . zn], and I = 〈f1, . . . fk〉. Let G be a Gröbner basis of I with a monomial order �. F ∈ I

if and only if F
G

= 0, i.e., the division of F towards G generates zero remainder (Proposition 27).

G also determined the structure of the quotient ring R/I (Definition 4). f ∼ g if and only if

f − g ∈ I. The division of f1 − f2 towards G detects equivalent relations. In particular,

Proposition 33. Let M be the set of all monic monomials in R which are not divisible by any

leading term in G. Then the set,

V = {[p]|p ∈M} (57)

is an F-linear basis of R/I.
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Proof. For any F ∈ R, F
G

consists of monomials which are not divisible by any leading term in

G. Hence [F ] is a linear combination of finite elements in V .

Suppose that
∑

j cj [pj ] = 0 and each pj ’s are monic monomials which are not divisible by leading

terms of G . Then
∑

j cjpj ∈ I, but by the Algorithm 2.
∑

j cjpj
G

=
∑

j cjpj . So
∑

j cjpj = 0 in

R and cj ’s are all zero.

As an application, consider fraction reduction for N/(f1 . . . fk), where N is polynomial in R,

N

f1 . . . fk
=

r

f1 . . . fk
+

k∑
j=1

si

f1 . . . f̂j . . . fk
. (58)

The goal is to make r simplest, i.e., r should not contain any term which belongs to I = 〈f1, . . . fk〉.

We compute the Gröbner basis of I, G = {g1, . . . gl} and record the conversion relations gi =∑k
j=1 fjaji from the computation.

Polynomial division of N towards G gives,

N = r +

l∑
i=1

qigi (59)

where r is the remainder. The result,

N

f1 . . . fk
=

r

f1 . . . fk
+

k∑
j=1

(∑l
i=1 ajiqi

)
f1 . . . f̂j . . . fk

, (60)

gives the complete reduction since by the properties of G, no term in r belongs to I. (60) solves

integrand reduction problem for multi-loop diagrams. In practice, there are shortcuts to compute

numerators like
(∑l

i=1 ajiqi
)
.

2. Solve polynomial equations with Gröbner basis

In general, it is very difficult to solve multivariate polynomial equations since variables are

entangled. Gröbner basis characterizes the solution set and can also remove variable entanglements.

Theorem 34. Let f1 . . . fk be polynomials in R = F[x1, . . . xn] and I = 〈f1 . . . fk〉. Let F̄ be

the algebraic closure of F. The solution set in F̄, ZF̄(I) is finite, if and only if R/I is a finite

dimensional F-linear space. In this case, the number of solutions in F̄, counted with multiplicity,

equals dimF(R/I).

Proof. See Cox, Little, O’Shea [6].
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Note that again, we distinguish F and its algebraic closure F̄, since we do not need computations

in F̄ to count total number of solutions in F̄. dimF(R/I) can be obtained by counting all monomials

not divisible by LT(G(I)), leading terms of the Gröbner basis. Explicitly, dimF(R/I) is computed

by vdimvdimvdim of Singular.

Example 35. Consider f1 = −x2 + x + y2 + 2, f2 = x3 − xy2 − 1. Determine the number of

solutions f1 = f2 = 0 in C2.

Compute the Gröbner basis for {f1, f2} in grevlexwith x � y, we get,

G = {y2 + 3x+ 1, x2 + 2x− 1}. (61)

Then LT(G)={y2, x2}. Then M in Proposition 33 is clearly {1, x, y, xy}. The linear basis for

Q[x, y]/〈f1, f2〉 is {[1], [x], [y], [xy]}. Therefore there are 4 solutions in C2. Note that Bézout’s

theorem would give the number 2×3 = 6. However, we are considering the solutions in affine space,

so there are 6 − 4 = 2 solutions at infinity. Another observation is that the second polynomial in

G contains only x, so the variable entanglement disappears and we can first solve for x and then

us x-solutions to solve y. This idea will be developed in the next topic, elimination theory.

3. Solving polynomial equations

One very common question is to solve,

f1(x1 . . . xn) = . . . = fk(x1 . . . xn) = 0 . (62)

when the solution number is finite. This problem can be solved by Groebner basis. In fact, many

modern computer programs already used Groebner basis approach.

An related question is that: let S be the solution set of 62. Instead of computing all the

solutions, we are interested in a polynomial F , summed over all solutions,∑
pi∈S

F (pi) (63)

As we will see, this sum can be directly obtained from Groebner basis. Furthermore, the sum must

be a rational function of the coefficients in the input polynomials f ’s! The Groebner basis method

provides a way to compute the sum, in an analytic way.

Let I = 〈f1, . . . fk〉, and R/I be the quotient ring. From the discussion in the previous sub-

section, we know the R/I is a finite-dimensional linear space, if the solution if a finite set. That

implies that we can transfer a multivariate polynomial problem to a linear algebra problem.
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Suppose the we get the Groebner basis G(I) of I in some ordering. Explicitly,

R/I = spanF
(
m1, . . . ,mN

)
(64)

where m’s are the monomials which are not divided by the leading terms of G(I).

Definition 36. For any given polynomial F , we define the companion matrix MF as

[Fmj ] =
N∑
i=1

MF,ij [mi], ∀1 ≤ j ≤ N (65)

The N ×N matrix MF is thus defined by the elements MF,ij. Here N is the number of solutions.

It is clear that by the polynomial division, M ’s elements are just numbers in the coefficient ring.

It is easy to see that

MF +MG = MF+G, MFMG = MFG (66)

Hence the companion matrix is a representation of the polynomials in the quotient ring R/I.

Proposition 37. 1. The eigenvalues of MF are the values F (p)’s, for all p ∈ S.

2. If F (p), p ∈ S are all distinct, then any left eigenvectors of MF , up to an overall factor, has

the form (
m1(p), . . .mN (p)

)
(67)

for some p ∈ S.

The proof is in [6].

From this proposition, we see that ∑
p∈S

F (p) = trMF (68)

Since to get MF , we just used Groebner basis and polynomial division, we see that no algebraic

extension is needed. Therefore the formula gives the analytic sum instead of the numeric sum. This

is a very useful computational tool used for the CHY formalism and the Bethe Ansatz equation.

Note that to use the second statement of proposition, we can design a generic F like

F = c1x1 + . . . cNxN (69)

with random-integer valued ci. With a large probability, all values of F on the solution set are

distinct. It is a powerful tool to solve polynomial equation numerically and has been adopted in

many computer softwares.
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4. Elimination theory

We already see that Gröbner basis can remove variable entanglement, here we study this prop-

erty via elimination theory,

Theorem 38. Let R = F[y1, . . . ym, z1, . . . zn] be a polynomial ring and I be an ideal in R. Then

J = I ∩ F[z1, . . . zn], the elimination ideal, is an ideal of F[z1, . . . zn]. J is generated by G(I) ∩

F[z1, . . . zn], where G(I) is the Gröbner basis of I in lex order with y1 � y2 . . . � ym � z1 � z2 . . . �

zn.

Proof. See Cox, Little and O’Shea [7].

Note that elimination ideal J tells the relations between z1 . . . zn, without the interference with

yi’s. In this sense, yi’s are “eliminated”. It is very useful for studying polynomial equation system.

In practice, Gröbner basis in lex may involve heavy computations. So frequently, we use block

order instead, [y1, . . . ym] � [z1, . . . zn] while in each block grevlex can be applied.

Here we give a simple example in IMO,

Example 39 (International Mathematical Olympiad, 1961/1).

Problem Solve the system of equations:

x+ y + z = a

x2 + y2 + z2 = b2

xy = z2 (70)

where a and b are constants. Give the conditions that a and b must satisfy so that x, y, z (the

solutions of the system) are distinct positive numbers.

Solution The tricky part is the condition for positive distinct x, y, z. Now with Gröbner basis this

problem can be solved automatically.

First, eliminate x, y by Gröbner basis in lex with x � y � z. For example, in Mathematica

GroebnerBasis[{−a+ x+ y + z,−b2 + x2 + y2 + z2, xy − z2}, {x, y, z},GroebnerBasis[{−a+ x+ y + z,−b2 + x2 + y2 + z2, xy − z2}, {x, y, z},GroebnerBasis[{−a+ x+ y + z,−b2 + x2 + y2 + z2, xy − z2}, {x, y, z},

MonomialOrder→ Lexicographic,CoefficientDomain→ RationalFunctions]MonomialOrder→ Lexicographic,CoefficientDomain→ RationalFunctions]MonomialOrder→ Lexicographic,CoefficientDomain→ RationalFunctions]

and the resulting Gröbner basis is,

G =
{
a2− 2az− b2,−a4 + y

(
2a3+ 2ab2

)
+ 2a2b2 − 4a2y2 − b4, a2 − 2ax− 2ay + b2

}
. (71)
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The first element is in Q(a, b)[z], hence it generates the elimination ideal. Solve this equation, we

get,

z =
a2 − b2

2a
. (72)

Then eliminate y, z by Gröbner basis in lex with z � y � x. We get the equation,

a4 + x(−2a3 − 2ab2)− 2a2b2 + 4a2x2 + b4 = 0 . (73)

To make sure x is real we need the discriminant,

−4a2(a2 − 3b2)(3a2 − b2) ≥ 0 . (74)

Similarly, to eliminate x, z, we use lex with z � x � y and get

a4 + y(−2a3 − 2ab2)− 2a2b2 + 4a2y2 + b4 = 0 , (75)

and the same real condition as (74). Note that x and y are both positive, if and only if x, y are

real, x+ y > 0 and xy > 0. Hence positivity for x, y, z means,

z =
a2 − b2

2a
> 0

x+ y = a− z = a− a2 − b2

2a
> 0 (76)

−4a2(a2 − 3b2)(3a2 − b2) ≥ 0. (77)

which implies that,

a > 0, b2 < a2 ≤ 3b2. (78)

To ensure that x, y and z are distinct, we consider the ideal in Q[a, b, x, y, z].

J = {−a+ x+ y + z,−b2 + x2 + y2 + z2, xy − z2, (x− y)(y − z)(z − x)}. (79)

Note that to study the a, b dependence, we consider a and b as variables. Eliminate x, y, z, we

have,

g(a, b) = (a− b)(a+ b)(a2 − 3b2)2(3a2 − b2) ∈ J. (80)

If all the four generators in J are zero for some value of (a, b, x, y, z), then g(a, b) = 0. Hence, if

g(a, b) 6= 0, x, y and z are distinct in the solution. So it is clear that inside the region defined by

(78), the subset set

a > 0, b2 < a2 < 3b2. (81)

satisfies the requirement of the problem. On the other hand, if a2 = 3b2, explicitly we can check

that x, y and z are not distinct in all solutions. Hence x, y, z in a solution are positive and distinct,

if and only if a > 0 and b2 < a2 < 3b2. With (72) and (73), it is trivial to obtain the solutions.
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5. Intersection of ideals

In general, given two ideals I1 and I2 in R = F[z1, . . . zn], it is very easy to get the generating

sets for I1 +I2 and I1I2. However, it is difficult to compute I1∩I2. Hence again we refer to Gröbner

basis especially to elimination theory.

Proposition 40. Let I1 and I2 be two ideals in R = F[z1, . . . zn]. Define J as the ideal generated

by {tf |f ∈ I1} ∪ {(1 − t)g|g ∈ I2} in F[t, z1, . . . zn]. Then I1 ∩ I2 = J ∩ R, and the latter can be

computed by elimination theory.

Proof. If f ∈ I1 and f ∈ I2, then f = tf + (1− t)f ∈ J . So I1 ∩ I2 ∈ J ∩R. On the other hand, if

F ∈ J ∩R, then

F (t, z1, . . . , zn) = a(t, z1, . . . , zn)tf(z1, . . . , zn) + b(t, z1, . . . , zn)(1− t)g(z1, . . . , zn) , (82)

where f ∈ I1, g ∈ I2. Since F ∈ R, F is t independent. Plug in t = 1 and t = 0, we get,

F = a(1, z1, . . . , zn)f(z1, . . . , zn), F = b(0, z1, . . . , zn)g(z1, . . . , zn) . (83)

Hence F ∈ I1 ∩ I2, J ∩R ⊂ I1 ∩ I2.

In practice, terms like tf and (1− t)g increase degrees by 1, hence this elimination method may

not be efficient.

[1] Y. Zhang, JHEP 1209, 042 (2012), 1205.5707.

[2] D. A. Kosower and K. J. Larsen, Phys. Rev. D85, 045017 (2012), 1108.1180.

[3] R. Hartshorne, Algebraic geometry (Springer-Verlag, New York, 1977), ISBN 0-387-90244-9, graduate

Texts in Mathematics, No. 52.

[4] O. Zariski and P. Samuel, Commutative algebra. Vol. 1 (Springer-Verlag, New York-Heidelberg-Berlin,

1975), with the cooperation of I. S. Cohen, Corrected reprinting of the 1958 edition, Graduate Texts

in Mathematics, No. 28.

[5] O. Zariski and P. Samuel, Commutative algebra. Vol. II (Springer-Verlag, New York-Heidelberg, 1975),

reprint of the 1960 edition, Graduate Texts in Mathematics, Vol. 29.

[6] D. A. Cox, J. B. Little, and D. O’Shea, Using algebraic geometry, Graduate texts in mathematics

(Springer, New York, 1998), ISBN 0-387-98487-9, URL http://opac.inria.fr/record=b1094391.

[7] D. A. Cox, J. Little, and D. O’Shea, Ideals, varieties, and algorithms, Undergraduate Texts in Math-

ematics (Springer, Cham, 2015), 4th ed., ISBN 978-3-319-16720-6; 978-3-319-16721-3, an introduction

http://opac.inria.fr/record=b1094391


29

to computational algebraic geometry and commutative algebra, URL http://dx.doi.org/10.1007/

978-3-319-16721-3.

[8] J.-C. Faugère, Journal of Pure and Applied Algebra 139, 61 (1999), ISSN 0022-4049, URL http:

//www.sciencedirect.com/science/article/pii/S0022404999000055.

[9] J. C. Faugère, in Proceedings of the 2002 International Symposium on Symbolic and Algebraic Com-

putation (ACM, New York, NY, USA, 2002), ISSAC ’02, pp. 75–83, ISBN 1-58113-484-3, URL

http://doi.acm.org/10.1145/780506.780516.

[10] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, Singular 4-0-2 — A computer algebra

system for polynomial computations, http://www.singular.uni-kl.de (2015).

[11] D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry,

Available at http://www.math.uiuc.edu/Macaulay2/.

[12] J.-C. Faugère, in Mathematical Software - ICMS 2010, edited by K. Fukuda, J. Hoeven, M. Joswig,

and N. Takayama (Springer Berlin / Heidelberg, Berlin, Heidelberg, 2010), vol. 6327 of Lecture Notes

in Computer Science, pp. 84–87.

[13] J. Faugère, P. Gianni, D. Lazard, and T. Mora, Journal of Symbolic Computation 16, 329 (1993), ISSN

0747-7171, URL http://www.sciencedirect.com/science/article/pii/S0747717183710515.

[14] A field K is algebraically closed, if any non-constant polynomial in K[x] has a solution in K. Q is not

algebraically closed, the set of all algebraic numbers Q̄ and C are algebraically closed.

http://dx.doi.org/10.1007/978-3-319-16721-3
http://dx.doi.org/10.1007/978-3-319-16721-3
http://www.sciencedirect.com/science/article/pii/S0022404999000055
http://www.sciencedirect.com/science/article/pii/S0022404999000055
http://doi.acm.org/10.1145/780506.780516
http://www.singular.uni-kl.de
http://www.math.uiuc.edu/Macaulay2/
http://www.sciencedirect.com/science/article/pii/S0747717183710515

	Issues at higher loop orders
	Elementary computational algebraic geometry methods
	Basic facts of algebraic geometry in affine space I
	Gröbner basis
	One-variable case
	Gröbner basis
	Multivariate polynomial division
	Buchberger algorithm

	Application of Gröbner basis
	Ideal membership and fraction reduction
	Solve polynomial equations with Gröbner basis
	Solving polynomial equations
	Elimination theory
	Intersection of ideals


	References

